The Reaction of 3-Aminoisoquinoline With Nitrous Acid

Thomas J. Schwan and Homer A. Burch

Chemical Research Division, Norwich Eaton Pharmaceuticals, Inc.,
Norwich, New York 13815
Received June 11, 1982

The product of the reaction of 3-aminoisoquinoline and nitrous acid has been identified as the previously unreported 3,4-isoquinolinedione 4-oxime hydrate.

J. Heterocyclic Chem., 20, 239 (1983).

In 1956, Boyer and Wolford, in preparing 3-isoquinolinol (1) by the diazotization of 3-aminoisoquinoline (2) with a three-fold excess of nitrous acid, isolated an unidentified by-product as well as 1. Elemental analysis and infrared spectral data were presented for this material which was also prepared by treatment of 1 with nitrous acid (1).

Five years later, Baumgarten et al. (2) pointed out that yields of 1 in the diazotization sequence could be increased appreciably by employing equimolar quantities of 2 and nitrous acid. These workers also reported that 1 reacted further with nitrous acid to provide an unknown substance; attempts to confirm the earlier workers' elemental analysis on the substance were unsuccessful (2).

The reaction of 2 with three-fold excess of nitrous acid has been repeated in these laboratories and the product, isolated in 88% yield, has been identified as 3,4-isoquinolinedione 4-oxime hydrate (3) (Figure 1). The structure

assignment for 3 rests on the following considerations: elemental and water analysis, infrared and nuclear magnetic resonance spectral data as well as low and high resolution mass spectral data.

The aromatic region of the nmr spectrum of 3 was characterized by a multiplet centered at δ 7.58 integrating for three protons and a multiplet at δ 8.50 integrating for one proton. To test the hypothesis that the downfield signal represents the 5-proton (peri to the oximino function), the model oxime 4 (3) was prepared for nmr comparison purposes.

The aromatic region of 4 was characterized by a three

proton multiplet at δ 7.18 and a one proton multiplet at δ 7.88. As expected, the protons of 3 appeared downfield in relation to those of model oxime 4. Nonetheless, the similarities in splitting patterns of the two compounds varifies the assignment of the downfield signal of 3 to the 5-proton.

That the heterocyclic ring remained intact during the diazotization is indicated by a singlet at δ 5.63 which is ascribed to the 1-proton.

Further evidence for structure 3 is derived from its electron impact and chemical ionization mass spectra. Figure 2 summarizes the proposed mass spectral fragmentation

Figure 2

Mass Spectral Fragmentation of 3

pattern observed at masses greater than m/e 80. The numbers shown in parentheses refer to the relative abundance of the ions. The molecular formulas corresponding to each of the structures representing ions greater than m/e 100 were verified by high resolution electron-impact mass spectrometry. That the ion observed at m/e 174 was indeed the molecular ion (M^+) was confirmed by the observance of M+1, M+29 and M+41 ions in the chemical ionization spectrum when CH_4 was used as the carrier gas. The only fragment ion observed on chemical ionization corresponded to m/e 157.

The formation of oxime 3 from 2 is envisioned as proceeding thru 5, a tautomer of 3-isoquinolinol 1. Reaction of 5 with nitrous acid at the position adjacent to the carbonyl function gave 3.

EXPERIMENTAL

Melting points were taken in a Mel Temp apparatus and are uncorrected. The nuclear magnetic resonance spectra were taken on a Bruker WP-80 instrument and were compared with TMS as an internal standard. Infrared spectra were determined as Nujol mulls on a Perkin-Elmer 137B spectrophotometer. The mass spectra were determined on a Finnigan Model 3300 gc/ms with Industries System 150 data system and on an AEI MS-902 high resolution mass spectrometer.

3.4-Isoquinolinedione 4-oxime hydrate (3).

To a solution of 47.1 g (0.48 mole) of concentrated sulfuric acid in 390 ml of water stirred at 30° was added quickly 17.3 g (0.12 mole) of 3-aminoisoquinoline (2) (4). The solution was cooled to 5° and a solution of 24.8 g (0.36 mole) of sodium nitrite in 60 ml of water was added over 45 minutes at 5-10°. The mixture was stirred at 3-7° for 2.5 hours and the solid was filtered, washed with 2×75 ml of water, and dried at 60° to give 20.2 g (88%) of the product. Recrystallization from water gave an analytical sample, mp 198-200° dec; nmr (DMSO-d₆): δ 5.63 (s, 1, 1-H), 7.58 (m, 3, 6-H, 7-H, 8-H), 8.50 (m, 1, 5-H); ir: (μ) 3.17 (O-H), 6.02 (C = O), 6.21 (C = N).

Anal. Calcd. for C₉H₆N₂O₂•H₂O: C, 56.25; H, 4.19; N, 14.58; H₂O, 9.37. Found: C, 56.02; H, 4.25; N, 14.44; H₂O, 10.1.

3,4-Dihydro-1(2H)-naphthalenone Oxime (4).

To a solution of 1.40 g (0.02 mole) of hydroxylamine hydrochloride in 50 ml of water was added 1.64 g (0.02 mole) of sodium acetate followed by 2.92 g (0.02 mole) of 3,4-dihydro-1(2H)-naphthalenone in 50 ml of methanol. After a 1.25 hour reflux period, the solution was concentrated to a volume of 60 ml and allowed to stand at room temperature overnight. The solid was recrystallized from 10 ml of methanol to give 1.95 g (61%) of 4, mp 102-104°, lit mp 102-103°(3); nmr (DMSO-d₆): δ 1.75 (m, 2, 3-CH₂), 2.80 (m, 4, 2-CH₂ and 4-CH₂), 7.18 (m, 3, 5-H, 6-H, 7-H); 7.88 (m, 1, 8-H); ir: (μ) 3.05-3.25 (O-H), 6.11, 6.29 (C = C, C = N).

Anal. Calcd. for C₁₀H₁₁NO: C, 74.51; H, 6.88; N, 8.69. Found: C, 74.29; H, 6.95; N, 8.57.

REFERENCES AND NOTES

- (1) J. H. Boyer and L. T. Wolford, J. Org. Chem., 21, 1297 (1956).
- (2) H. E. Baumgarten, W. F. Murdock, and J. E. Dirks, *ibid.*, **26**, 803 (1961).
 - (3) G. Baddeley and R. Williamson, J. Chem. Soc., 4647 (1956).
 - (4) C. E. Teague, Jr. and A. Roe, J. Am. Chem. Soc., 73, 688 (1951).